
J .  FZ'luid Mech. (1976), VOZ. 69, part 3, pp. 615-624 

Printed in &eat Britain 

615 

A viscous internal wave in a stratified fluid whose 
buoyancy frequency vanes with altitude 

By D. GORDON, U. R. KLEMENT 
AND T. N. STEVENSON 

Department of the Mechanics of Fluids, University of Manchester, England 

(Received 17 October 1974) 

A viscous incompressible stably stratified fluid with a buoyancy frequency which 
varies slowly with altitude is considered. A simple harmonic localized disturbance 
generates an internal wave in which the energy propagates along curved paths. 
Small amplitude similarity solutions are obtained for two-dimensional and 
axisymmetric waves. It is found that under certain conditions the wave ampli- 
tude can increase with height. The two-dimensional theory compares quite well 
with experimental measurements. 

1. Introduction 
A n  internal gravity wave is produced in a stably stratified fluid when a localized 

disturbance oscillates a t  a frequency equal to or less than wo, the buoyancy or 
Brunt-Vaisala frequency of the fluid. Gortler (1943) showed that the energy 
propagates along the arms of a cross inclined at  angles of sin-l(w/w,) to the 
horizontal, where w is the oscillatory frequenGy of the disturbance. The arms of 
the cross are straight when wo is constant and curved when wo varies with altitude. 
The effects of viscosity on a two-dimensional wave in an incompressible fluid 
which has a constant buoyancy frequency were studied by Thomas & Stevenson 
(1972). They obtained a similarity solution which shows how the width of the 
wave increases away from the disturbance. This paper will be referred to as I. 

In  the present paper the theory of I is extended to two- and three-dimensional 
waves in a fluid with a buoyancy frequency which varies slowly with altitude. 
The theory is compared with experimental measurements in two-dimensional 
waves. When wo varies with height the oscillations within the wave can increase 
in amplitude with height even though the kinematic viscosity remains constant, 
whereas when wo remains constant the wave amplitudes always attenuate. 

2. Two-dimensional theory 
A stratified incompressible fluid in which the background density and viscosity 

are, for the present, unspecified is considered. A solution for the flow field around 
a horizontal line disturbance is sought in a vertical plane which is perpendicular 
to the line disturbance. The disturbance is simple harmonic with frequency w .  
Only one arm of the cross is considered. 



616 D. Gordon, U .  R. Klement and T .  N .  Stevenson 

Wave path 

/ / 

Virtual origin 
at x=xo, y=O 

FIGURE 1. Co-ordinate axes. 

Experiments show that the energy lies in a narrow region centred about a wave 
path 8 = S(x'), where 8 is the angle of the wave path to the horizontal. The 
x' co-ordinate is measured along the wave path from an origin which is near the 
mean position of the disturbance and the y' co-ordinate is normal to the wave 
path and in the direction of the inviscid phase velocity (see figure 1). The curve 
8 = 8(x') will be related to the buoyancy frequency in the subsequent analysis. 

The velocity components are u' and v', pT is the density, pT the viscosity, 
p ,  the pressure and t' is the time. The perturbation variables are p' = pT -po,  
p' = pT -po and p' = pT -p0, where the subscript zero refers to the equilibrium 
values. 

Experimental measurements in the wave indicate that the u' velocity com- 
ponents are much larger than the v' velocity components and that the variations 
with y' are much greater than those with x'. The dimensionless variables 
(undashed) are defined as follows: 

x' = x/p, y' = yalp, u' = uaglw, v' = vaaglw, 

t' = t/w, p' = pap", p' = pap*, p' = paap*g/p, 

where 01 = (P2p*/2p"w)f, p = w21g and g is the gravitational acceleration. p" and 
p* are the constant equilibrium conditions at  the level of the disturbance and a is 
a constant amplitude coefficient. Following I it will be assumed that 8 is not 
close to 0 or Qn and that a < a < I so that terms involving a may be neglected 
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relative to terms involving a. Thus the continuity and incompressibility equa- 
tions in non-dimensional form with curvilinear co-ordinate scale factors (h, l )  are 

au a -+- (hv) = 0 
ax ay 

and @/at = A,r0(usin8-avcos8), (2) 

where h = 1 +aydO/dx, A, = P0/P, ro = po/py'. 

The perturbation momentum equations obtained by subtracting the hydrostatic 
relations are 

au aap a i a  
r - = ----psin/3+2a m - -- (hu) +-- +O(a)+O(a2) (3) 

O a t  hax { 'i?y(hdy ) '2:) 
and 

where m, = ,uo/,u*. The boundary conditioiis to be satisfied are that the dependent 
variables u, v, p and p and all their derivatives tend to zero as y-+ k 03. 

The dimensionless vertical co-ordinate x (=  z'p) is written as (see figure I)  

roa a v p t  = - appy +p COS e+ O ( U )  + ~ ( q ,  ( 4 )  

x = Z(x) - a y  cos B(X), (5) 

where Z(x) = sinO(1c)dk. 
J O X  

m,, ro and A, are functions of x and may be expanded in powers of a. Thus 

r o ( 4  = r1(4 + ar,(x, y) 4- O(a2),  

where rl(x) = r,,(Z) and r,(z,y) = -ycosOdr,,(Z)/dx. 
Similarly 

A&) = hl(x) + ah,(x, y) + O(a2) and m,(z) = ml(x) + am2(x, y) + O(a2). 

It is assumed that the perturbation variables have a time dependency e-it 
and may be expanded as u = u1 + au2 . . . , v = v1 + av2.. . , p = p1  + apz . . . , and 
p = p1 + ap, . . . . These are substituted into (1)-(4) and terms of like order are 
equated to give 

au,/ax + av,lay = 0, (7) 

p1 = iAlrlul sin 8 = irlul/sin 8, (8) 

ip2 + ul sin 8(A2rl + Alr2)  + Alrl(u2 sin 8 - v1 cos 8) = 0, (9) 

ir2ul + irlu2 - apl/ax -p2 sin 8 + 2m1 a2ul/ay2 = o (10) 

and p1 cos 8 - apl/ay = 0. (11) 

O(x) = sin-l(h,:) = sin-1 (wlw,). (12) 

Equation (8) gives the wave path in terms of the background conditions: 

x(Z) may be written in terms of the background density ro as 

X ( Z )  = 1: ( ---) 1 dr, 4 dz. 
ro dx 
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The analysis now follows that of I and will merely be outlined. It is convenient 
to introduce the dimensionless variable P(x, y ,  t )  = (rl cot O)-*pl. An equation 
for P is then obtained from (7)-(11) together with the stipulated boundary 
conditions: 

This equation is essentially the x-direction momentum equation and the 
momentum flux condition may be found by integrating it across the wave path 
from y = -a to +a: 

provided that 

m 

In  this case [ P d y  = JsinOe-it, 
J - m  

where J is a constant. 
The solution to (14) must satisfy the momentum flux condition and the 

boundary conditions at y = & co, including conditions (15). P is assumed to be of 
the form P = l (x)  f(7) e-it, 
where 7 = y/b(x), Equation (14) now reduces to the ordinary differential equation 

3f ”’ + i(7f’ + f )  = 0, (17) 

and the momentum flux condition reduces to 

f d 7  = J ,  

providing 

and 

The point x = xo is for the moment arbitrary, but represents the position from 
which the internal wave originates. At this point, which is referred to as the 
virtual origin of the wave, b(x) = 0. Equation (17) is the same as that obtained 
in I and the solution satisfying the boundary conditions and the momentum flux 
condition is 

(20) f = jm exp ( --K3+ i q )  d-K. 
0 

The dimensionless variables take the following forms: 

pl * 9( l ( r l  cot O)+fe-it), 
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FIGURE 2. The variation in the maximum velocity u, along the wave path when (a) 
0 = sin-1(Cz*) and ( b )  0 = oos-l(Cz). 0, is the angle the wave path makes with the 
horizontal at the virtual origin z = q,. uz are the values of u, where 6’ = 0, k 10’. 

and the dimensionless displacement 6 ( = 6’p/a) along the wave is given by 

These equations describe a narrow region close to the wave path in which 
energy is propagating away from the disturbance. The width b(x )  of the wave is 
given by (18). Wave crests and troughs lie along lines of constant 7 and their 
phase velocity is in the +y  direction. 

The maximum velocity urn(x) at the centre of the wave reduces with altitude 
initially but can eventually increase with altitude if the background conditions 
are suitable. Under the Boussinesq approximation rl = ml = 1, it  can be shown 
that urn can increase away from the disturbance if 

r m  

Consequently an increase in urn can occur when 0 < 8 < in- if the angle of the 
wave path to the horizontal decreases sufficiently quickly with altitude. When 
in- < 8 < +n the velocity will increase with altitude only if 8 increases sufficiently 
quickly. Examples of two cases in which the velocities increase are given in 
figures 2 (a )  and (b ) ,  where the wave paths have the forms 0 = sin--l(Cx&) and 
8 = cos-1 (Cx) respectively. The origin of the disturbance is at x = x,, where 
8 = 8,. The increases in velocity occur as the wave bends towards the vertical 
and towards the horizontal respectively. When 8 is constant urn always decreases 
with altitude. It must be noted that the theory cannot be applied close to 
8 = 0 or in. 
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The solution for the axisymmetric wave produced by an oscillating point 
disturbance is given in the appendix. The magnitudes of the dependent variables 
are virtually their two-dimensional values divided by the square root of the 
distance from the axis. 

3. Experiments 
A glass-sided tank 1.8 m long, 0.9 m high and 0.55 m from front to back was 

used. The stratification was obtained by filling the tank from the bottom with 
layers of successively denser salt soIution and then allowing the solution to diffuse 
for two days. A small body was suspended at  different heights in the tank. The 
body was attached to a balance and the different buoyancy forces acting on the 
body were used to calculate the density distributions. 

An internal wave was generated by a lOmm diameter horizontal cylinder 
which spanned the tank and oscillated such that its longitudinal axis remained 
horizontal. Neutrally buoyant oil drops within the wave (see I) were observed 
using a cine camera fixed to a traversing system. The cine camera was synchro- 
nized such that the time of each frame in the film was known relative to the time 
at which the cylinder was in its mean position. The amplitudes within the wave 
were typically 1 mm. 

Waves in two different stratifications are described: one in which the angle 8 
decreases with altitude (stratification A )  and one in which Bincreases (stratifica- 
tion B). The experiments will be compared with the Boussinesq form of the 
equations. 

Stratification A 

The density distribution within the tank was given by 

p0/p ,  = 1*14-.&-B~~, 

where pw is the density of water, A = 1.99, B = 27.8 and x = z’p. The oscillatory 
frequency w of the cylinder was 0.88 rad s-l and the wave path calculated from 
the density distribution is approximately 

(26) sin 8 = 1*12/(A + 2Bx)*. 

For the experiments the origin of the co-ordinate system is taken as the virtual 
origin, so that x,, = 0. The value of a was 2.3 x and the amplitude coefficient 
a was two orders of magnitude less than this. 

A virtual origin-was chosen to give a reasonable fit with the experiments and 
this value is uwd in all the comparisons. Given the wave path, the virtual origin 
and a, a position in the tank at which measurements were made was transformed 
from (x’, y’) to (x, y) and then to (x, 7) using the theoretical value of b(x) from (18). 
The wave path is shown in figure 3, the variation in wave width in figure 4 and 
the variation in the maximum displacements S&,, in figure 5. The curves calcu- 
lated from the theory are also shown on the figures. Both the theoretical and 
experimental variations in the phase across the wave relative to the phase at  

= 0 are shown in figure 6. 
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FIGURE 3. The wave path from the virtual origin. -. -, stratification A ,  
equation ( 2 6 ) ;  - , stratification B, equation (27). 
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FIGURE 4. Variation in the wave width with height z' for stratification A.  The width is 
measured between the positions at which the maximum displacements are 0.6 of the 
maximum centre-line displacement. - - -, theory; A, experiment. 

Xtratijcation B 
In  the second set of measurements the wave path had the form 

sin 8 = (C + ox)+, (27) 

where C = 0.0191 and B = 28.1. The wave path is shown in figure 3. The oscil- 
latory frequency was 1-14rads-l and a was 1.7 x The amplitude coefficient 
was again two orders of magnitude less than a. 

The wave width calculated from (18) is 
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FIGURE 5. The maximum displacements along the wave from the virtual origin. 
Stratification A :  - - -, theory; A, experiment. Stratification B:  -, theory; 0, expen- 
ment. 

71 
FIG= 6. The variation in phase across half of the wave relative to the phase a t  7 = 0 for 
stratification A .  - , theory. Experiments, distances above the virtual origin: A, 
z’ = 140mm; 0, z’ = 181 mm; 0. z’ = 201 mm. 

and the theoretical maximum displacements at  7 = 0 are given by 

S,,, = c1(sin3B/b4cos 8)4. 

The maximum displacements are shown in figure 5 and the variations of the 
displacements with time are shown in figure 7. The theoretical curves are also 
shown. 

4. Discussion 
The closer a wave is to the vertical the smaller is its group velocity, the velocity 

a t  which energy propagates along it, and therefore a stronger wave exists in 
which the amplitudes are higher. An extreme case was described by Gordon & 
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FIGURE 7. A comparison between the experimental and theoretical displacement profiles 
at four times during a half-cycle for stratification B. -, theory. Experiments, distances 
above the virtual origin: x , z' = 35 mm; 0, z' = 75 mm; A, z' = 175 mm. The dimen- 
sionless times t :  (a) an, (b) %, ( e )  n, (d )  zn. 

Stevenson (1972). They showed that a body oscillating a t  the buoyancy frequency 
in a fluid with a constant buoyancy frequency can generate a very strong vertical 
wave. 

The errors introduced by the various approximations within the theory have 
been estimated in the same manner as that used in I. For stratification A the 
wave has only a small curvature and it appears that all the neglected terms are 
less than 10 yo of those retained for the region in which measurements were taken. 
This was also the case for the straight wave in I. However, for stratification B 
the large curvature and steep inclination of the wave path do violate some of the 
theoretical assumptions. The ratio of the nonlinear convection term uf du'/dx' to 
the pressure term apf/axf is less than 0.2 when 8 is less than 75' but increases 
rapidly as 8 approaches in. This restriction could have been reduced by 
decreasing the amplitude of oscillation within the wave. However the curvature 
term ayd8/dx is more restrictive. This term increases in a similar way but a t  
the outer edge of the wave it is greater than 0.2 when 8 is above 70". The ratio 
v[.m.8./ui.m.8. of the theoretical root-mean-square velocities in the yf and X I  direc- 
tions is the most restrictive in that it reaches a value of 0.2 at the outer edge of 
the wave when 0 reaches 68'. The outer edge of the wave was taken as 7 = 5.85. 
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Although the experimental results show considerable scatter they do roughly 
follow the theoretical predictions even when 8 is greater than 68". As the wave 
turned towards the vertical there was evidence of reflected energy propagating 
back towards the horizontal level of the disturbance. This was seen as a general 
increase in the level of the disturbance outside the main wave. However, it  was 
not possible to correlate the results in the reflected wave. 

D. Gordon was in receipt of a Scientific Research Council maintenance grant 
and U. R. Klement a University of Manchester postgraduate award. The work is 
supported by the Procurement Executive of the Ministry of Defence. 

Append.ix. The axisymmetric wave 
The flow field produced by a vertically oscillating point source is symmetrical 

about the vertical line through the source, and the region of disturbance is centred 
about a surface with this vertical line as axis. The wave path is the intersection of 
this surface with a vertical plane containing the point source. The wave path 
passes through the mean position of the point source and this is chosen as the 
origin of the co-ordinate system (x, y, a). x is measured along the wave path and 
y is normal to it as in the two-dimensional case. Cl is the azimuthal angle about 
the vertical line through the point disturbance. The v velocity and the 
y co-ordinate are again stretched by the factor 01-1 and the scale factors are 
h, = 1 - ay df3/dx, A, = 1 and h, = R(x) -a  y sin 8, where B(x)  is the horizontal 
distance from the axis to the wave path and is given by 

R(x) = cos 8(k) dk. 

The analysis now follows the two-dimensional case and it is found that the wave 
path, the wave profiles and the wave width are identical to the two-dimensional 
ones. Only the magnitudes of the dependent variables are affected and these are 
essentially multiplied by the factor R-4. The dependent variables are given by 

p, = B{l(r, cot 8/R)* f e-it), 

i 1 Rtan8  4db df d RtanO * 
V 1 = B  (R[b( - - - rl ) &'&-&(I(?) ) f ] e - i t ) '  

P 1 =  1 B ( m o ( + )  r tan8 4df $-it], 

where I, b and f take their two-dimensional forms. 
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